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Abstract 

I derived a critical grain size below which microcracking does not 
occur based on volume changes as a result of Li charging into brittle 
Li-alloys. The predicted critical grain size is less than the unit cell size 
for a majority of single-phase materials. This suggests that decreasing 
the particle and /or grain size is not a practical solution for solving the 
mechanical instability problem of Li-alloys. 
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1.  Introduction 
The use of Li-alloys (e.g., LixM, where M - Al, Bi, Sn, Si, and Ga) as 
anodes in Li batteries leads to improved safety and faster cycling rates 
compared to pure Li [1-5]. A disadvantage of Li-alloys compared to pure 
Li as anodes is a reduction in specific energy and energy density. Another 
problem with Li-alloy electrodes is mechanical instability. Mechanical 
instability refers to the microcracking/crumbling of the alloy when Li is 
inserted /removed during charging/discharging. Some potential solu- 
tions to solve the mechanical instability problem include [6-9] (i) incorpo- 
rating the alloys within a ductile Li-ion conducting metal or polymer 
matrix or (ii) decreasing the alloy particle and/or grain size. A decrease in 
the particle and/or grain size is also important from an electrochemical 
viewpoint, as it can lead to faster cycling rates [10]. However, many 
questions remain, and among them are these two: How small a grain size 
is required for the Li-alloys to exhibit mechanical stability during lithium 
charging/discharging? Are grain sizes of Li-alloy particles produced 
using new nanophase (particle sizes between 10 to 100 nm) techniques 
small enough? 

This technical note attempts to answer the above questions by determin- 
ing a critical grain size below which microcracking and, hence, disintegra- 
tion of the Li-alloy anodes does not occur during Li charging. 

2.  Discussion 
Microcracking occurs in Li-alloys as a result of volume expansion during 
Li charging. The determination of the critical grain size below which 
microcracking does not occur is based on an energy criterion. The basic 
concept of the energy criterion is that the strain energy (generated due to 
a volume difference between phases) released when microcracks form 
must equal or exceed that required for the creation of new fracture sur- 
faces. The energy criterion has been successfully applied to explain crack 
formation in brittle materials, microcracking due to thermal shock, and 
thermal expansion anisotropy [11-13]. 

We can start with a single particle composed of fine equiaxed grains. The 
total energy of this system, Utot, is given as follows [11-13]: 

"fof ~ "0 ~~ ^strain + ^surface ' W 

where U0 is the energy of the unmicrocracked particle, Ustmin is the strain 
energy per unit volume, and Usurrace is the surface energy per unit area. 
The following discussion assumes that microcracking (i) is due to tensile 
stresses generated as a result of volume expansion and (ii) occurs along 
grain boundaries. Assuming a dodecahedral grain morphology of grain 
size, d, equation (1) reduces to [13] 

Utot = U0 - 7.66 NUstrain d3 + 20.65 Nyd2 , (2) 



where N is the number of grains that relieve their elastic strain energy by 
microcracking and /is the surface energy. The critical grain size, d jt, is 
calculated by differentiating equation (2) and equating it to zero as 
follows: 

dcr^ 1.79 r/Ustrajn . (3) 

The importance of equation (3) is that a material with a grain size smaller 
than dcrjt will not exhibit microcracking; whereas if the grain size is 
greater than dcrit, it will exhibit microcracking. Assuming only elastic 
behavior, the strain energy is given as follows: 

^ra/„ = ^2/2E, (4) 

where c is the stress and E is the elastic modulus. For the case of a vol- 
ume change, the stress is given as follows [14]: 

o = -^- &-, (5) 3(l-2v) V0 ' {D> 

where AV is the volume change, V0 is the initial volume, and v is 
Poisson's ratio. Substituting equation (5) into equation (4) and combining 
it with equation (3) yields the following equation for the critical grain size 
as a function of volume change: 

_ 32.2^1 -2v)2y0
2 

" ait ~ ; • (6) 
EAV2 

Equation (6) can be used to determine how small a grain size is required 
for Li-alloys (e.g., LixM, where M = Al, Bi, Sn, Si, and Ga) that are used as 
anodes and that do not exhibit microcracking during lithium charging. A 
material with a grain size less than dcrjt (eq. (6)) will not exhibit 
microcracking as a result of tensile stresses generated due to a volume 
expansion. 

What is the critical grain size of an Li-alloy that is to be used as an anode 
in Li batteries? For example, take Li4 4Sn. This binary alloy has the highest 
Li capacity in the Li-Sn system [7]. The volume change, AV/VQ, from Sn 
to Li4 4Sn is 2.59 per atom of Sn [7,15]. Determination of the critical grain 
size also requires that E, v, and ybe known. Unfortunately, a review of the 
literature did not reveal the values of E, v, and /for Li4 4Sn. The average E 
for 20 other intermetallic alloys is close to 200 GPa [16]. The surface 
energy for brittle materials is typically between 0.3 to 1.2 J/m2 [17]. Using 
E = 200 GPa, y= 0.75 J/m2, v = 0.33 (a typical value for a crystalline solid), 
and AV/V0 = 2.59, the critical grain size below which microcracking will 
not occur during Li charging of Sn to Li4 4Sn can be determined. Inserting 
these values into equation (6) yields a predicted dcrit ~ 0.002 nm. If the 
value of the surface energy is off by a factor of 2, and the elastic modulus 
is off by a factor of 10, the predicted critical grain size is still less than 
0.040 nm. It is important to note that this grain size (0.040 nm) is about 12 
to 13 times smaller than the size of an Sn unit cell (=0.5 nm). A similar 



calculation for Li4 4Si (AV/VQ = 3.12 [7]) yields a predicted dcrit ~ 
0.0014 nm. These results suggest that it is almost impossible to obtain a 
fine enough grain size to prevent microcracking during Li charging of a 
single-phase material. It is believed that this is primarily a result of the 
strain energy generated by large tensile stresses due to the volume change 
that cannot be accommodated by plastic deformation due to the brittle 
nature (significant fraction of covalent or ionic bonding) of the material 
and, hence, microcracking occurs. The above predictions are in agreement 
with experimental electrochemical results, which reveal that it is almost 
impossible to electrochemically insert Li into fine grain pure metals such 
as Sn to form Li-Sn alloys without the alloys suffering cracking/ 
disintegration [15,18]. Even if a sacrifice in capacity is made to reduce the 
amount of volume expansion, the predicted critical grain size is still less 
than the size of a unit cell for most of the Li-alloys. For example, Li 
charging of Sn to form LiSn (AV/VQ = 0.53) instead of Li4 4Sn only in- 
creases the critical grain size by a factor of about 25, to about 0.05 nm. 
This grain size is still much smaller than the size of the Sn unit cell. The 
above predictions and their agreement with the experimental observa- 
tions emphasize that producing a fine enough grain size in an intrinsi- 
cally brittle single-phase material to prevent microcracking as a result of a 
volume expansion due to Li charging is highly unlikely, no matter what 
processing technique is used, including new nanophase techniques. 

The results suggest that decreasing the particle and the grain size is not a 
practical solution to solve the mechanical instability problem of Li-alloys. 
More likely solutions to solve this problem include (i) incorporating the 
Li-alloys within a ductile Li-ion conducting metal or polymer matrix as 
previously suggested [6-9] or (ii) surrounding the alloys within a matrix 
that places them under compressive stresses to prevent microcracking 
formation. This suggestion may explain why SnO and Sn02 can be 
cycled, whereas metallic Sn cannot [15,18,19]. It has been observed that as 
Li is initially titrated into SnO or Sn02, it decomposes to Li20 and Sn. 
Upon further Li addition, a series of Li-Sn alloys form with increasing Li 
content until a final alloy composition of Li4 4Sn is reached [15,19,20]. It is 
likely that the Li20 surrounding the Li-Sn alloys supplies a residual 
compressive stress that prevents the Li-Sn alloys from suffering mechani- 
cal deterioration during repeated charging/discharging. This same 
reasoning may also explain why Li2MnO4/Na0 7Mn02 composites exhibit 
better capacity retention during cycling in the 3-V region compared to 
single-phase Li2Mn04 [21]. 

3.  Conclusions 
A critical grain size below which microcracking does not occur based on 
volume changes as a result of Li charging into brittle Li-alloys was de- 
rived based on energy considerations. The predicted critical grain size is 
less than the unit cell size for a majority of single-phase materials. This 
suggests that decreasing the particle and /or the grain size is not a practi- 
cal solution for solving the mechanical instability problem associated 



with Li-alloys. More likely solutions to this problem include (i) incorpo- 
rating the Li-alloys within a ductile Li-ion conducting metal or polymer 
matrix or (ii) surrounding the alloys within a matrix that places them 
under a compressive stress. 
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